RAMAKRISHNA MISSION VIDYAMANDIRA

(Residential Autonomous College under University of Calcutta)

THIRD YEAR B.A./B.SC. SIXTH SEMESTER (January – June) 2013 Mid-Semester Examination, March 2013

Date : 19/03/2013 Time : 11 am - 1 pm

CHEMISTRY (Honours)

Paper - VIII

Full Marks : 50

[Use Separate Answer Books for each unit]

[Answer <u>any one</u> question from each unit]

<u>Unit – I</u> (K.R.)

- 1. a) The spectral bands in lanthanide complexes are usually larger in number and sharper than that of d-block elements. Explain.
 - b) On going from Nd(III) to Pm(III) the number of unpaired electrons increases from f³ to f⁴ but magnetic moment decreases. Explain. [3+3]
- 2. a) Calculate the ground state magnetic moment in BM of Pr(III) with outer electronic configuration $4f^2$.
 - b) Ce(III) ions (f¹ in aqueous solution is colourless. Justify. (Given, $\lambda = 643 \text{ cm}^{-1}$) [3+3]

<u>Unit – II</u> (D.M)

a)) Applying 18e rule Calculate the value of x in $HFe_5N(CO)_x$.				
b)	$[Cr_2Cl_9]^{-3}$ is paramagnetic while $(W_2Cl_9]^{-3}$ is diamagnetic. Explain	[2]			
c)	What are the conditions for Metal-Metal bonding?	[2]			
d)	What is the structure of $[Fe_4C(CO)_{12}]^{2-?}$	[1]			
a)	Explain Beer Lambert law. What are the limitations?	[2+1]			
b)	0.45 gm steel sample containing Mn was dissolved in acid and treated with KIO ₄ . Volume oxidised MnO_4^- solution was marked to 100 me and OD of diluted solution was found to 0.40 in cm cell. Find the % of Mn in the sample (given, molar extinction co-efficient $2 \cdot 2 \times 10^3$)				
	b) c) d) a)	 b) [Cr₂Cl₉]⁻³ is paramagnetic while (W₂Cl₉]⁻³ is diamagnetic. Explain c) What are the conditions for Metal-Metal bonding? d) What is the structure of [Fe₄C(CO)₁₂]²⁻? a) Explain Beer Lambert law. What are the limitations? b) 0.45 gm steel sample containing Mn was dissolved in acid and treated with KIO₄. Volume oxidised MnO₄⁻ solution was marked to 100 me and OD of diluted solution was found to 0.40 in 			

Unit – III (S.G.)

- 5. a) What are systematic and random errors?
 - b) Analysis of a sample of iron ore give the following percentage value of iron content : 7.08, 7.12, 7.21, 7.09, 7.16 and 7.14. Calculate the mean, standard deviation and co-efficient of variation for the values.
- 6. a) What do you mean by 'accuracy' and 'precision' in quantitative analysis? For titrating 10 ml of a 0.1(N) solution with a 0.1(N) titrant the following volumes of titrant were obtained by two analyst.

Analyst A	:	9.80	9.91	9.85	10.08	10·25 ml
Analyst B	:	10.09	10.12	10.10	10.12	10.08 ml

Calculate the mean and standard deviation for the above two sets of the results and hence comment on the accuracy and precision of the results. [1+4]

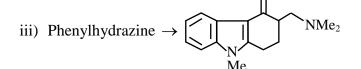
$\underline{Unit - IV}$ (S.R.)

- 7. a) What do you mean by argentometry?
 - b) Describe the titration of a 100ml 0.1(M) NaCl solution by a same molarity of AgNO₃ solution using $10^{-2}(M)$ solution of K₂CrO₄ (indicator). K_{SP} of Ag₂CrO₄ and AgCl are 1.1×10^{-2} and 1.0×10^{-10} . [3]

[2]

[2]

[3]


[1]

8. Explain the term iodo and iodimetry with examples and the characteristic points of iodometric determination. [2+2]

- 9. Answer **any two** from the following :
 - a) Write down the advantage of gravimetric analysis over that of volumetric analysis.
 - b) Write down the requirements of gravimetric analysis.
 - c) Give an example of a masking agent and demasking agent. Why EDTA is a very suitable reagent in complexometric titration.
- 10. Answer **any two** from the following :
 - a) Explain the term : Simultaneous precipitation, Co-precipitation and post precipitation. Why in gravimetric analysis precipitation is always done in hot condition?
 - b) State the conditions necessary for a metal ion indicator to be used in EDTA titration. Name (with structure) any two metal ion indicator.
 - c) Write down the feasible conditions for complexometric estimation.

Unit – VI (A.B.H)

- 11. a) Carryout the following conversions :
 - i) D-glucose \rightarrow 2,4-di-O-methyl-D-glucose
 - ii) Benzaldehyde \rightarrow Phenylalanine

- b) Predict the product of the following reaction : Methyl $\alpha - D$ – glucopyranoside $\frac{Ph CHO}{H^+}$
- c) Draw the structure of dAMP and ADP.
- 12. a) Outline the mechanism of mutarotation in chair perspective formula in aqueous acid medium. [3]
 - b) Taking ethyl β -aminocrotonate as C_{N} moiety outline the synthesis of the following compounds : [5]

c) Predict the product(s) of the following reaction :

d) In acidic solution mucleosides are hydrolysed. Propose a mechanism for this reaction.

<u>Unit – VII</u> (D.J.)

- 13. a) Explain the followings :
 - i) In electronic spectroscopy, the absorption spectra and the emission spectra are mirror image to each other.
 - ii) Studying absorption spectrum of S₂, it is observed that certain spectral bands are diffuse.

(2)

[2]

[2×2]

[2]

[3×3]

[2×2]

[2×2]

[2]

[1]

- b) Using collision theory, estimate the collision number for 1 mol of HI present in a vol. of $1m^3$ at 300K. Take $d_{AA} = 0.35$ nm. If the activation energy for the decomposition of HI is 184 KJ mol⁻¹, what rate constant does kinetic theory predict at 300°C? Find out the pre-exponential factor? [2+1]
- 14. a) Give the mechanism of Lindemann-Christiansen unimolecular reaction and therefrom show that

$$[A]_{\frac{1}{2}} = \frac{k'_{\infty}}{k_{1}} \text{ ; where } k'_{\infty} \text{ is } \frac{k_{1}k_{2}}{k_{-1}} \text{ and } [A]_{\frac{1}{2}} \text{ is the 50\% of reactant, A.}$$
[3]

[2]

- b) Point out the 1^{st} order transitions using Jablonskii diagram using S_0 , S_1 and T_1 .
- c) What is Frank-Condon principle? Explain with PEC of different electronic states. [2]

<u>Unit – VIII</u> (S.S.R.)

- 15. a) Starting with the expression for transition moment integral in case of a spectroscopic transition, show that the essential conditions for rotational and vibrational transitions respectively are
 - i) Rotational transition the molecule must have a non-zero dipole moment.
 - ii) Vibrational transition the dipole moment of the molecule must change with the vibration. $[2.5\times2]$
 - b) The C-C vibrational line in ethane comes at a lower frequency (2954 cm⁻¹) that the same in acetylene (3374 cm⁻¹). Explain [1]
- 16. a) Comment and explain whether light induced transition may take place between two states described by the following wave functions.

$$\psi_{i} = \left(\frac{\alpha}{\pi}\right)^{\frac{1}{4}} e^{-\frac{y^{2}}{2}} ; \psi_{f} = \left(\frac{\alpha}{\pi}\right)^{\frac{1}{4}} \frac{1}{\sqrt{2}} (2y^{2} - 1)e^{-\frac{y^{2}}{2}} (\alpha \rightarrow \text{constant})$$
[3]

- b) i) Show that the intensity of spectral lines for rotational transition between the states J to J+1 passes through a maxima as J changes.
 - ii) Calculate this J_{max} in terms of T and other molecular constants. [2+1]

80衆QS